DS05-11315-4E

MEMORY cmos 4 M × 4 BIT FAST PAGE MODE DYNAMIC RAM

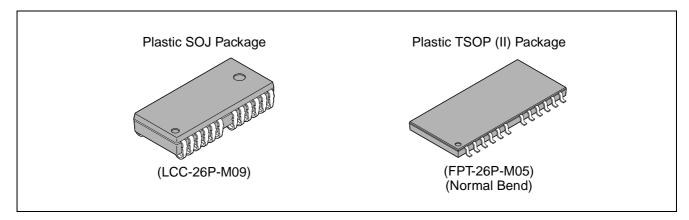
MB8116400B-50/-60

CMOS 4,194,304 × 4 Bit Fast Page Mode Dynamic RAM

DESCRIPTION

The Fujitsu MB8116400B is a fully decoded CMOS Dynamic RAM (DRAM) that contains 16,777,216 memory cells accessible in 4-bit increments. The MB8116400B features a "fast page" mode of operation whereby high-speed random access of up to $1,024 \times 4$ bits of data within the same row can be selected. The MB8116400B DRAM is ideally suited for mainframe, buffers, hand-held computers video imaging equipment, and other memory applications where very low power dissipation and high bandwidth are basic requirements of the design. Since the standby current of the MB8116400B is very small, the device can be used as a non-volatile memory in equipment that uses batteries for primary and/or auxiliary power.

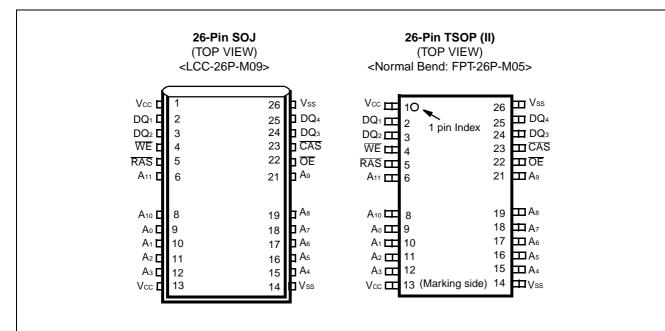
The MB8116400B is fabricated using silicon gate CMOS and Fujitsu's advanced four-layer polysilicon and two-layer aluminum process. This process, coupled with advanced stacked capacitor memory cells, reduces the possibility of soft errors and extends the time interval between memory refreshes. Clock timing requirements for the MB8116400B are not critical and all inputs are TTL compatible.

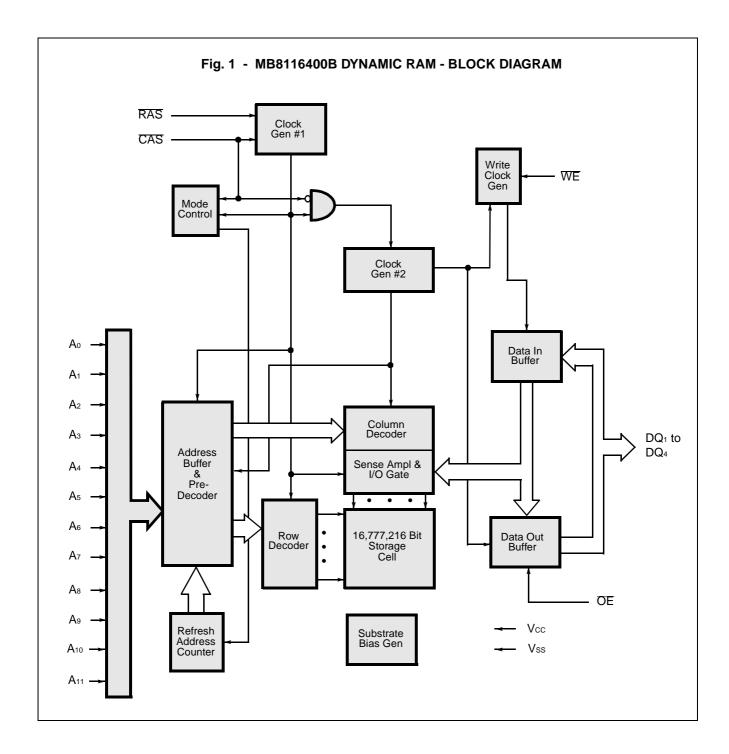

■ PRODUCT LINE & FEATURES

	Parameter	MB8116400B-50	MB8116400B-60		
RAS Access Time)	50 ns max.	60 ns max.		
Random Cycle Time		90 ns min.	110 ns min.		
Address Access Time		25 ns max.	30 ns max.		
CAS Access Time		13 ns max.	15 ns max.		
Fast Page Mode 0	Cycle Time	35 ns min.	40 ns min.		
Low Power	Operating Current	495 mW max.	412.5 mW max.		
Dissipation	Standby Current	11 mW max. (TTL level)/5.5 mW max. (CMOS			

- 4,194,304 words × 4 bits organization
- Silicon gate, CMOS, Advanced Stacked Capacitor Cell
- All input and output are TTL compatible
- 4096 refresh cycles every 65.6 ms

- Early write or OE controlled write capability
- RAS only, CAS-before-RAS, or Hidden Refresh
- Fast page mode, Read-Modify-Write capability
- On chip substrate bias generator for high performance


■ PACKAGE


Package and Ordering Information

- 26-pin plastic (300 mil.) SOJ,order as MB8116400B-xxPJ
- 26-pin plastic (300 mil.) TSOP-II with normal bend leads,order as MB8116400B-∞×PFTN

■ PIN ASSIGNMENTS AND DESCRIPTIONS

Designator	Function
DQ ₁ to DQ ₄	Data Input/Output
WE	Write enable.
RAS	Row address strobe.
A ₀ to A ₁₁	Address inputs.
Vcc	+5 volt power supply.
ŌĒ	Output enable.
CAS	Column address strobe.
Vss	Circuit ground.

■ FUNCTIONAL TRUTH TABLE

Operation Mode	Clock Input			Address Input		Input Data		Refresh	Note	
Operation wode	RAS	CAS	WE	OE	Row	Column	Input	Output	Kellesii	Note
Standby	Н	Н	Х	Х	_	_	_	High-Z	_	
Read Cycle	L	L	Н	L	Valid	Valid	_	Valid	Yes*	trcs ≥ trcs (min)
Write Cycle (Early Write)	L	L	L	Х	Valid	Valid	Valid	High-Z	Yes*	twcs ≥ twcs (min)
Read-Modify- Write Cycle	L	L	H→L	L→H	Valid	Valid	Valid	Valid	Yes*	
RAS-only Refresh Cycle	L	Н	Х	Х	Valid	Х	_	High-Z	Yes	
CAS-before-RAS Refresh Cycle	L	L	Н	Х	Х	Х	_	High-Z	Yes	tcsr ≥ tcsr (min)
Hidden Refresh Cycle	H→L	L	Н→Х	L	Х	Х	_	Valid	Yes	Previous data is kept.

X: "H" or "L"

■ FUNCTIONAL OPERATION

ADDRESS INPUTS

Twenty-two input bits are required to decode any four of 16,777,216 cell addresses in the memory matrix. Since only twelve address bits (A_0 to A_{11}) are available, the row and column inputs are separately strobed by \overline{RAS} and \overline{CAS} as shown in Figure 1. First, twelve row address bits are input on pins A_0 -through- A_{11} and latched with the row address strobe (\overline{RAS}) then, ten column address bits are input and latched with the column address strobe (\overline{CAS}). Both row and column addresses must be stable on or before the falling edge of \overline{RAS} and \overline{CAS} , respectively. The address latches are of the flow-through type; thus, address information appearing after t_{RAH} (min)+ t_T is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of WE. When WE is active Low, a write cycle is initiated; when WE is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUTS

Input data is written into memory in either of three basic ways—an early write cycle, an \overline{OE} (delayed) write cycle, and a read-modify-write cycle. The falling edge of \overline{WE} or \overline{CAS} , whichever is later, serves as the input data-latch strobe. In an early write cycle, the input data (DQ_1 to DQ_4) is strobed by \overline{CAS} and the setup/hold times are referenced to \overline{CAS} because \overline{WE} goes Low before \overline{CAS} . In a delayed write or a read-modify-write cycle, \overline{WE} goes Low after \overline{CAS} ; thus, input data is strobed by \overline{WE} and all setup/hold times are referenced to the write-enable signal.

^{* :} It is impossible in Fast Page Mode.

DATA OUTPUTS

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

trac : from the falling edge of RAS when tred (max) is satisfied.

tcac: from the falling edge of CAS when tRCD is greater than tRCD (max).

taa: from column address input when tRAD is greater than tRAD (max).

toEA: from the falling edge of OE when OE is brought Low after trac, tcac, or taa.

The data remains valid until either $\overline{\text{CAS}}$ or $\overline{\text{OE}}$ returns to a High logic level. When an early write is executed, the output buffers remain in a high-impedance state during the entire cycle.

FAST PAGE MODE OF OPERATION

The fast page mode of operation provides faster memory access and lower power dissipation. The fast page mode is implemented by keeping the same row address and strobing in successive column addresses. To satisfy these conditions, \overline{RAS} is held Low for all contiguous memory cycles in which row addresses are common. For each fast page of memory, any of $1,024 \times 4$ bits can be accessed and, when multiple MB8116400Bs are used, \overline{CAS} is decoded to select the desired memory fast page. Fast page mode operations need not be addressed sequentially and combinations of read, write, and/or read-modify-write cycles are permitted.

■ ABSOLUTE MAXIMUM RATINGS (See WARNING)

Parameter	Symbol	Value	Unit
Voltage at Any Pin Relative to Vss	VIN, VOUT	−0.5 to +7	V
Voltage of Vcc Supply Relative to Vss	Vcc	−0.5 to +7	V
Power Dissipation	PD	1.0	W
Short Circuit Output Current	_	-50 to +50	mA
Operating Temperature	Торе	0 to 70	°C
Storage Temperature	Тѕтс	-55 to +125	°C

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum rating conditions. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min.	Тур.	Max.	Unit	Ambient Operating Temp.
Supply Voltage	*1	Vcc	4.5	5.0	5.5	V	
Supply voltage	ı	Vss	0	0	0		0°C to +70°C
Input High Voltage, All Inputs	*1	VIH	2.4	_	6.5	V	0 0 10 +70 0
Input Low Voltage, All Inputs/outputs*	*1	VIL	-0.3	_	0.8	V	

^{*:} Undershoots of up to -2.0 volts with a pulse width not exceeding 20 ns are acceptable.

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

■ CAPACITANCE

 $(T_A = 25^{\circ}C, f = 1 \text{ MHz})$

Parameter	Symbol	Тур.	Max.	Unit
Input Capacitance, Ao to A11	C _{IN1}	_	5	pF
Input Capacitance, RAS, CAS, WE, OE	C _{IN2}	_	5	pF
Input/Output Capacitance, DQ1 to DQ4	CDQ	_	7	pF

■ DC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Note 3

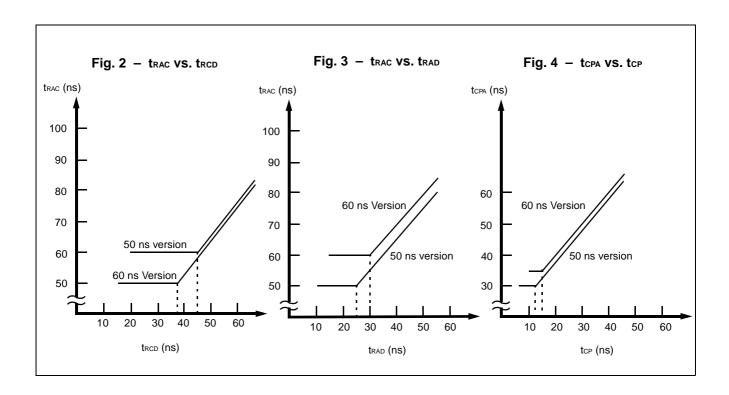
Parameter	Notes		Symbol	Condition	Values			Unit
Parameter	Notes	Notes		Condition	Min.	Тур.	Max.	Offic
Output High Voltage)	*1	Vон Iон = -5.0 mA		2.4	_	_	V
Output Low Voltage		*1	Vol	IoL = 4.2 mA		_	0.4	"
Input Leakage Curre	ent (Any	Input)	lı(L)	$ \begin{array}{l} 0 \ V \leq V_{\text{IN}} \leq V_{\text{CC}}; \\ 4.5 \ V \leq V_{\text{CC}} \leq 5.5 \ V; \\ V_{\text{SS}} = 0 \ V; \ All \ other \ pins \\ under \ test = 0 \ V \end{array} $	-10	_	10	μА
Output Leakage Current			I _{O(L)}	0 V ≤ V _{OUT} ≤ V _{CC} ; 4.5 V ≤ V _{CC} ≤ 5.5 V; Data out disabled	-10	_	10	
Operating Current	*2	MB8116400B-50	Land	RAS & CAS cycling; t _{RC} = min		_	90	mA
(Average Power Supply Current)	2	MB8116400B-60	Icc1				75	шд
Standby Current	*2	TTL level	1	RAS = \overline{CAS} = \overline{V}_{IH} $\overline{RAS} = \overline{CAS} \ge V_{CC} - 0.2 V$			2.0	mA
(Power Supply Current)	2	CMOS level	Icc2			_	1.0	
Refresh Current #1	*0	MB8116400B-50		CAS = V _{IH} , RAS cycling; t _{RC} = min		_	90	
(Average Power Supply Current)	*2	MB8116400B-60	Іссз				75	mA
Fast Page Mode	*0	MB8116400B-50		RAS = V _{IL} , CAS cycling;			80	
Current	*2	MB8116400B-60	Icc4	trc = min	_		70	mA
Refresh Current #2	*^	MB8116400B-50		RAS cycling;			90	0
(Average Power Supply Current)	*2	*2 Iccs CAS-before-RAS; MB8116400B-60 trc = min				75	mA	

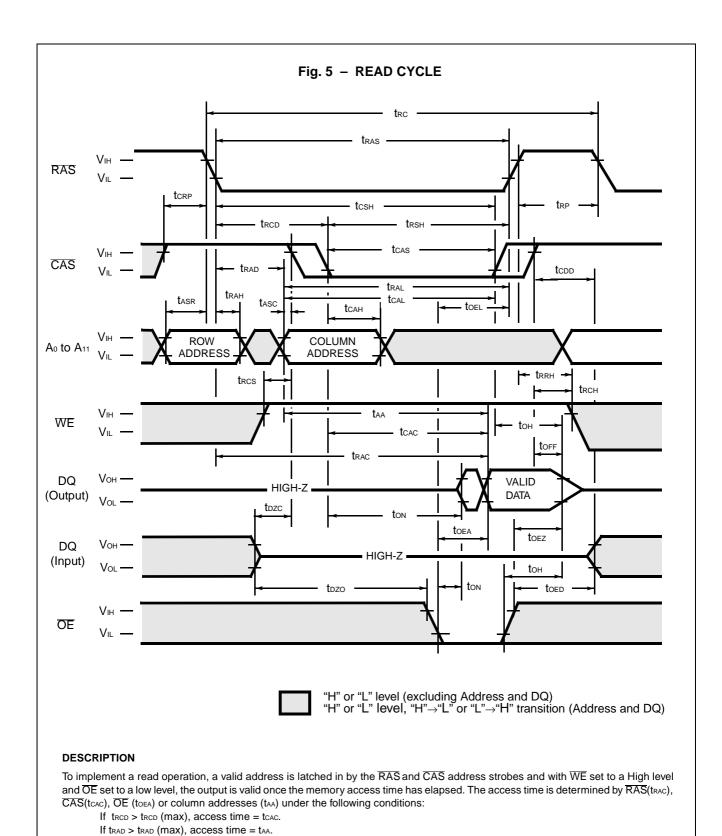
■ AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.)

Notes 3, 4, 5

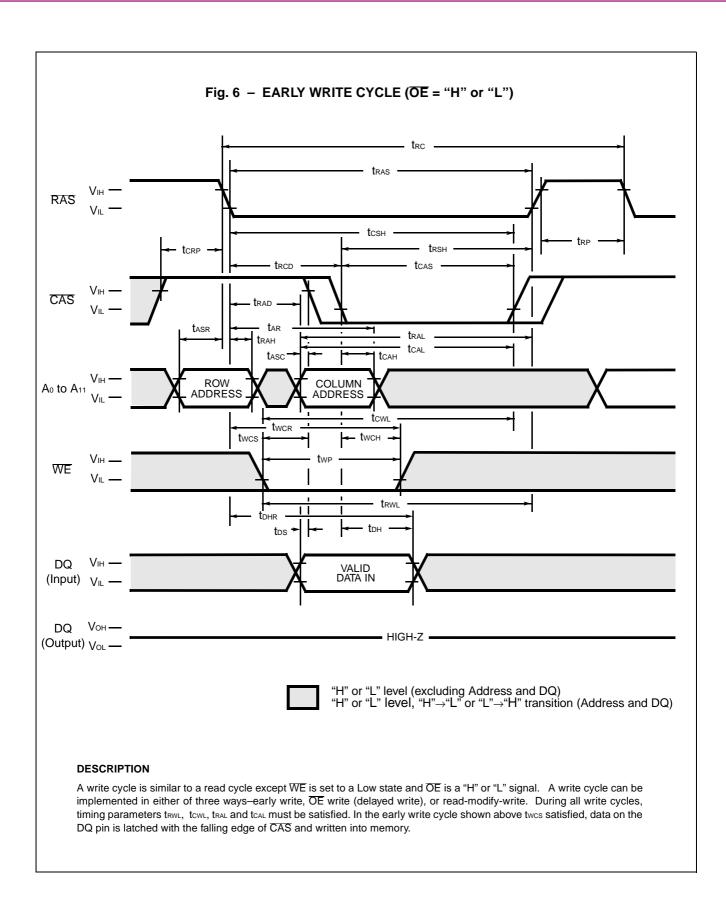
<u> </u>	econimended operating conditions	umc33 ou	ici wise iid	otcu.,	Notes		
No.	Parameter Notes	Symbol	MB8116	6400B-50	MB8110	6400B-60	Unit
NO.	raiametei Notes	Symbol	Min.	Max.	Min.	Max.	Oilit
1	Time between Refresh	tref	_	65.6	_	65.6	ms
2	Random Read/Write Cycle Time	t RC	90	_	110	_	ns
3	Read-Modify-Write Cycle Time	trwc	126	_	150	_	ns
4	Access Time from RAS *6,9	t RAC	_	50	_	60	ns
5	Access Time from CAS *7,9	tcac	_	13	_	15	ns
6	Column Address Access Time *8,9	t AA	_	25	_	30	ns
7	Output Hold Time	tон	3	_	3	_	ns
8	Output Buffer Turn On Delay Time	ton	0	_	0	_	ns
9	Output Buffer Turn off Delay Time *10	toff	_	13	_	15	ns
10	Transition Time	t⊤	3	50	3	50	ns
11	RAS Precharge Time	t RP	30	_	40	_	ns
12	RAS Pulse Width	t ras	50	100000	60	100000	ns
13	RAS Hold Time	t RSH	13	_	15	_	ns
14	CAS to RAS Precharge Time	t CRP	5	_	5	_	ns
15	RAS to CAS Delay Time *11,12	tRCD	17	37	20	45	ns
16	CAS Pulse Width	t cas	13	_	15	_	ns
17	CAS Hold Time	t csH	50	_	60	_	ns
18	CAS Precharge Time (Normal) *19	t CPN	7	_	10	_	ns
19	Row Address Setup Time	t asr	0	_	0	_	ns
20	Row Address Hold Time	t RAH	7	_	10	_	ns
21	Column Address Setup Time	tasc	0	_	0	_	ns
22	Column Address Hold Time	t CAH	7	_	10	_	ns
23	Column Address Hold Time from RAS	t ar	24	_	30	_	ns
24	RAS to Column Address Delay Time *13	tRAD	12	25	15	30	ns
25	Column Address to RAS Lead Time	t RAL	25	_	30	_	ns
26	Column Address to CAS Lead Time	t CAL	25	_	30	_	ns
27	Read Command and Setup Time	trcs	0	_	0	_	ns
28	Read Command Hold Time Referenced to RAS *14	trrh	0	_	0	_	ns
29	Read Command Hold Time Referenced to CAS *14	trch	0	_	0	_	ns
30	Write Command Setup Time *15,20	twcs	0	_	0	_	ns
31	Write Command Hold Time	twcн	7	_	10	_	ns
32	Write Command Hold Time from RAS	twcr	24	_	30	_	ns

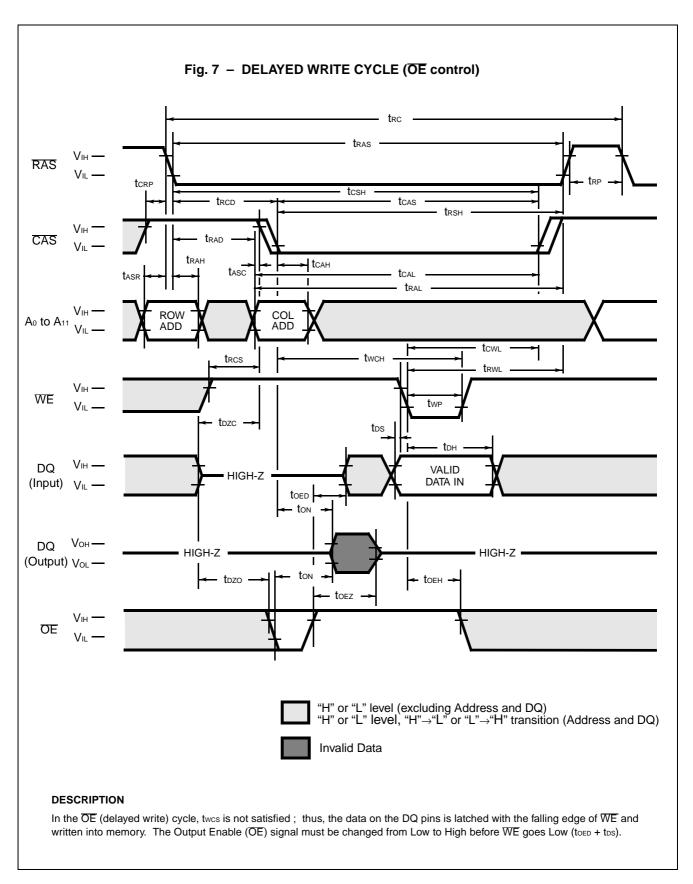

(Continued)

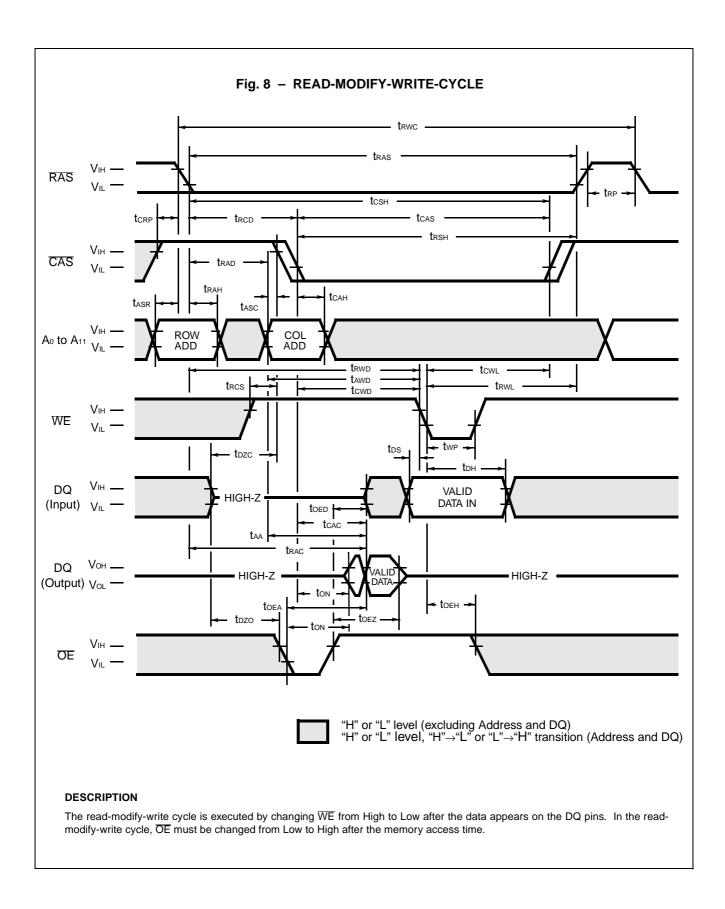

(Continued)

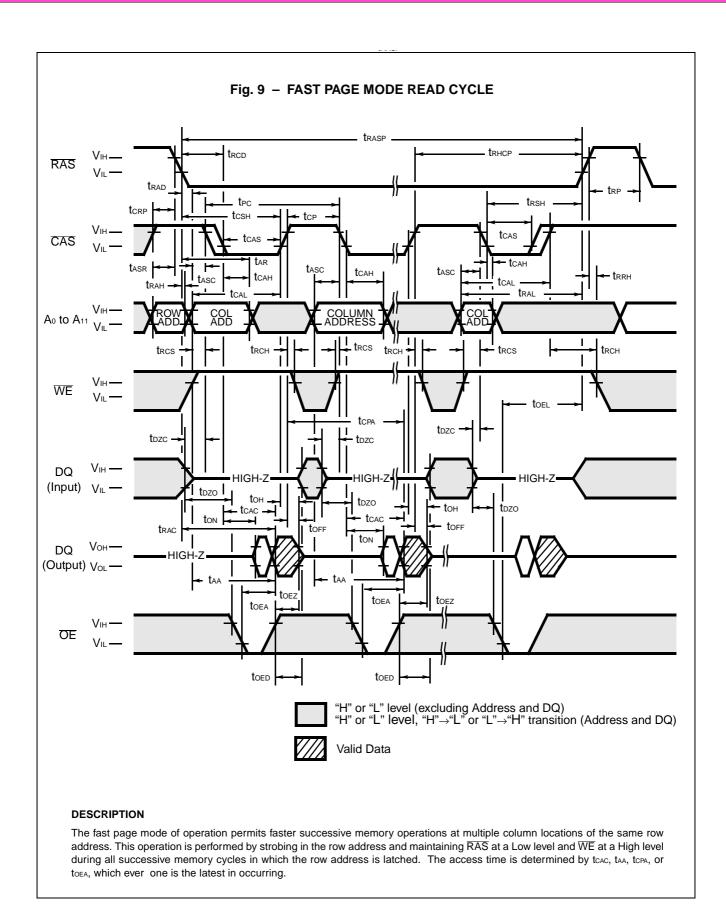
No.	Doromotor Notes	Cumbal	MB811	MB8116400B-50		MB8116400B-60		
NO.	Parameter Notes	Symbol	Min.	Max.	Min.	Max.	Unit	
33	WE Pulse Width	t wp	7	_	10	_	ns	
34	Write Command to RAS Lead Time	t RWL	13	_	15	_	ns	
35	Write Command to CAS Lead Time	tcwL	13	_	15	_	ns	
36	DIN Setup Time	t DS	0	_	0	_	ns	
37	DIN Hold Time	t DH	7	_	10	_	ns	
38	Data Hold Time from RAS	t DHR	24	_	30	_	ns	
39	RAS to WE Delay Time *20	t RWD	68	_	80	_	ns	
40	CAS to WE Delay Time *20	tcwd	31	_	35	_	ns	
41	Column Address to WE Delay Time *20	t awd	43	_	50	_	ns	
42	RAS Precharge Time to CAS Active Time (Refresh cycles)	t RPC	5	_	5	_	ns	
43	CAS Setup Time for CAS-before- RAS Refresh	tcsr	0	_	0	_	ns	
44	CAS Hold Time for CAS-before- RAS Refresh	t chr	10	_	10	_	ns	
45	WE Setup Time from RAS	twsr	0	_	0	_	ns	
46	WE Hold Time from RAS	twhr	10	_	10	_	ns	
47	Access Time from OE *9	t oea	_	13	_	15	ns	
48	Output Buffer Turn Off Delay *10	t oez	_	13		15	ns	
49	OE to RAS Lead Time for Valid Data	t oel	5	_	5	_	ns	
50	OE Hold Time Referenced to *16	t oeh	5	_	5	_	ns	
51	OE to Data In Delay Time	toed	13	_	15	_	ns	
52	CAS to Data In Delay Time	t cdd	13	_	15	_	ns	
53	DIN to CAS Delay Time *17	t dzc	0	_	0	_	ns	
54	DIN to OE Delay Time *17	t dzo	0	_	0	_	ns	
55	Fast Page Mode RAS Pulse Width	t rasp	_	100000	_	100000	ns	
60	Fast Page Mode Read/Write Cycle Time	t PC	35	_	40	_	ns	
61	Fast Page Mode Read-Modify-Write Cycle Time	t PRWC	71	_	80	_	ns	
62	Access Time from CAS Precharge *9,18	t CPA	_	30	_	35	ns	
63	Fast Page Mode CAS Precharge Time	t cp	7	_	10	_	ns	
64	Fast Page Mode RAS Hold Time from CAS Precharge	t RHCP	30	_	35	_	ns	
65	Fast Page Mode CAS Precharge to WE Delay Time *20	tcpwd	48	_	55	_	ns	

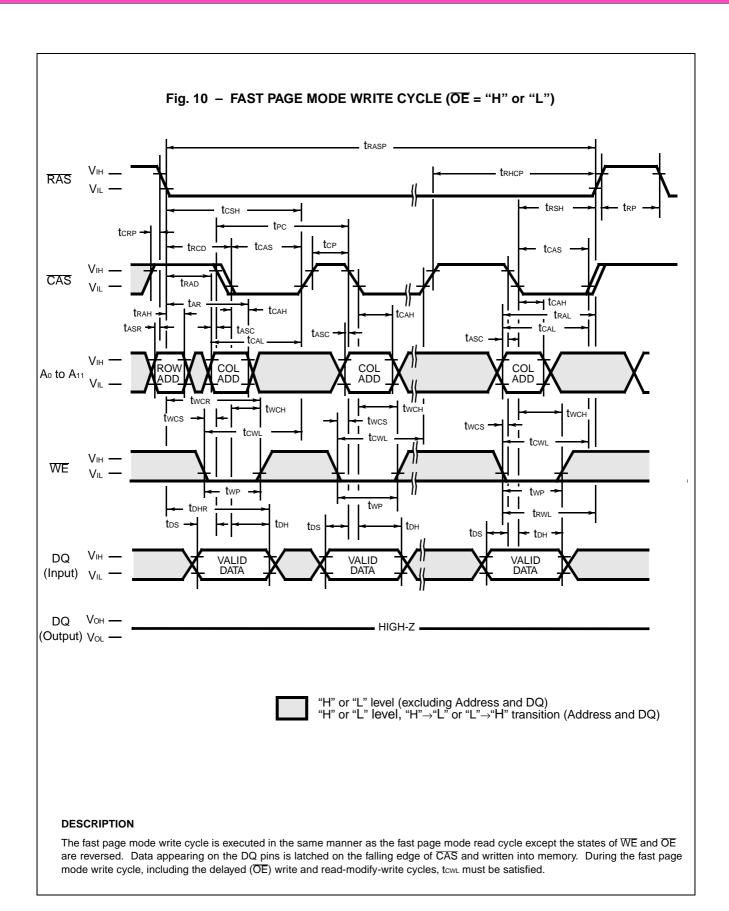
Notes: *1. Referenced to Vss.

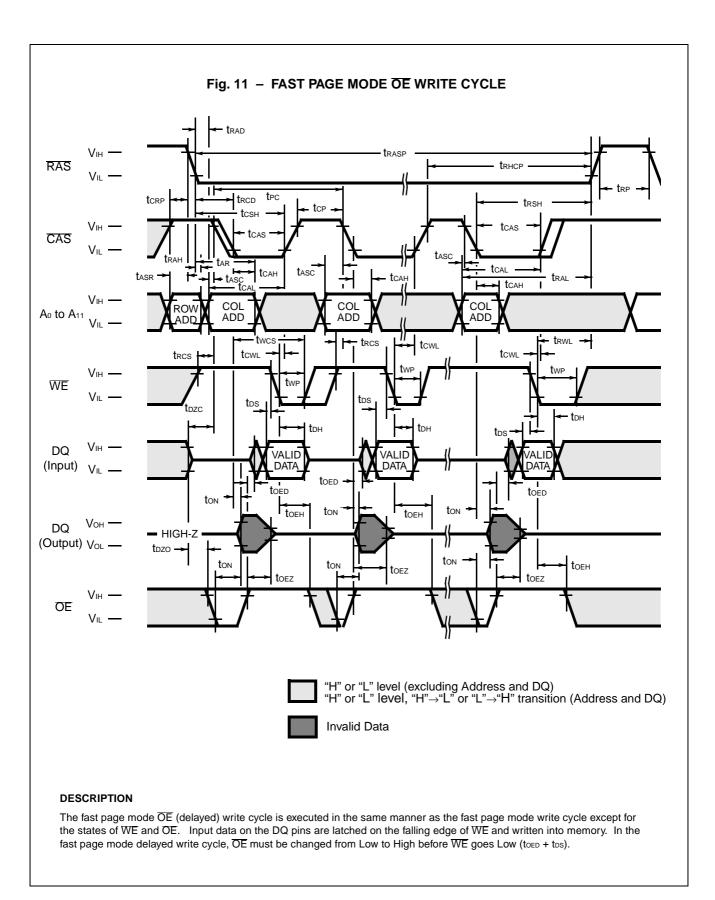

- *2. Icc depends on the output load conditions and cycle rates; the specified values are obtained with the output open. Icc depends on the number of address change as RAS= V_{IL}, CAS= V_{IH} and V_{IL}> −0.3 V. Icc₁, Icc₃, Icc₄ and Icc₅ are specified at one time of address change during RAS= V_{IL} and CAS= V_{IH}. Icc₂ is specified during RAS=V_{IH} and V_{IL}> −0.3 V.
- *3. An initial pause (RAS=CAS=VIH) of 200 μs is required after power-up followed by any eight RAS-only cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS-before-RAS initialization cycles instead of 8 RAS cycles are required.
- *4. AC characteristics assume $t_T = 5$ ns.
- *5. V_I (min) and V_I (max) are reference levels for measuring timing of input signals. Also transition times are measured between V_I (min) and V_I (max).
- *6. Assumes that trcd ≤ trcd (max), trad ≤ trad (max). If trcd is greater than the maximum recommended value shown in this table, trac will be increased by the amount that trcd exceeds the value shown. Refer to Fig. 2 and 3.
- *7. If $trcd \ge trcd$ (max), $trad \ge trad$ (max), and $tasc \ge taa tcac t\tau$, access time is tcac.
- *8. If trad \geq trad (max) and tasc \leq taa tcac tt, access time is taa.
- *9. Measured with a load equivalent to two TTL loads and 100 pF.
- *10. toff and toez is specified that output buffer change to high-impedance state.
- *11. Operation within the trod (max) limit ensures that trac (max) can be met. trod (max) is specified as a reference point only; if trod is greater than the specified trod (max) limit, access time is controlled exclusively by trac or trad.
- *12. t_{RCD} (min) = t_{RAH} (min)+ 2 t_{T} + t_{ASC} (min).
- *13. Operation within the trad (max) limit ensures that trac (max) can be met. trad (max) is specified as a reference point only; if trad is greater than the specified trad (max) limit, access time is controlled exclusively by trac or trad.
- *14. Either trrh or trch must be satisfied for a read cycle.
- *15. twcs is specified as a reference point only. If twcs ≥ twcs (min) the data output pin will remain High-Z state through entire cycle.
- *16. Assumes that twcs < twcs (min).
- *17. Either tozc or tozo must be satisfied.
- *18. tcpa is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if tcp is long, tcpa is longer than tcpa (max).
- *19. Assumes that CAS-before-RAS refresh.
- *20. twcs, tcwp, trwp, tawp and tcpwp are not restrictive operating parameters. They are included in the data sheet as an electrical characteristic only. If twcs > twcs (min), the cycle is an early write cycle and DQ pin will maintain high-impedance state throughout the entire cycle. If tcwp > tcwp (min), trwp > trwp (min), trwp > trype (min), trype > tcpwp (min) the cycle is a read modify-write cycle and data from the selected cell will appear at the DQ pin. If neither of the above conditions is satisfied, the cycle is a delayed write cycle and invalid data will appear the DQ pin, and write operation can be executed by satisfying trwp, tcwp, trape and tcal specifications.

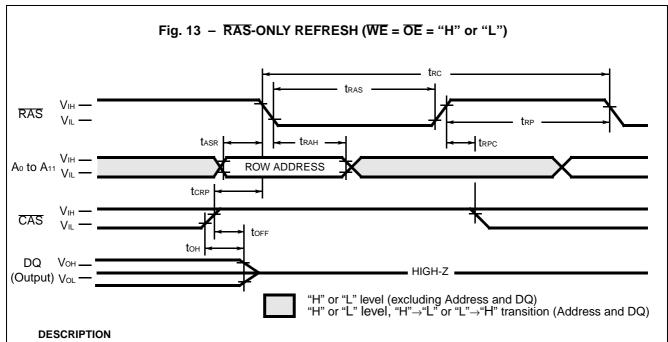


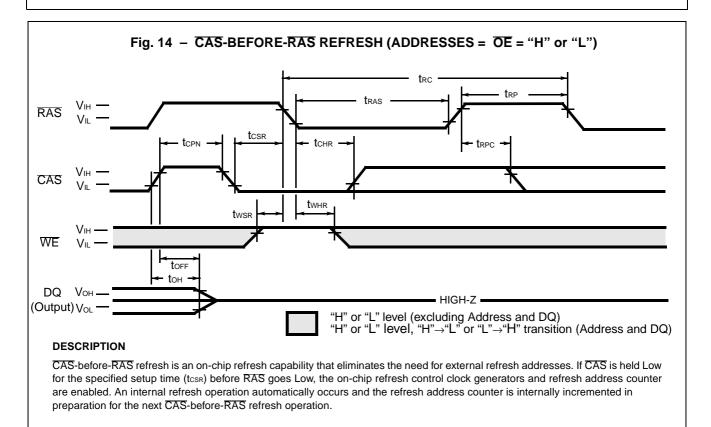


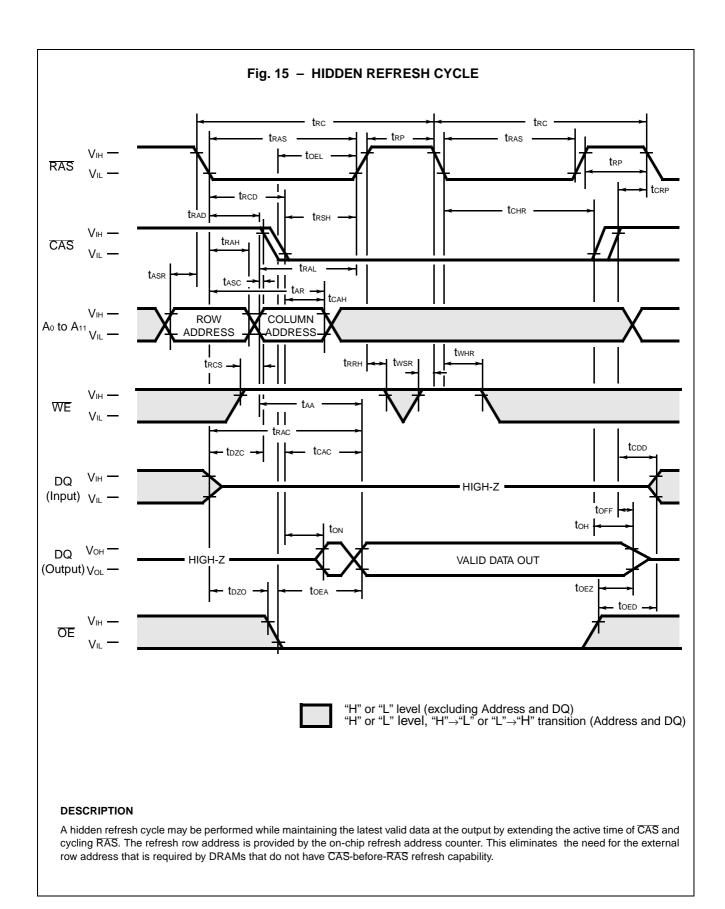

If \overline{OE} is brought Low after trac, tcac, or taa (whichever occurs later), access time = toea. However, if either \overline{CAS} or \overline{OE} goes High, the output returns to a high-impedance state after toh is satisfied.

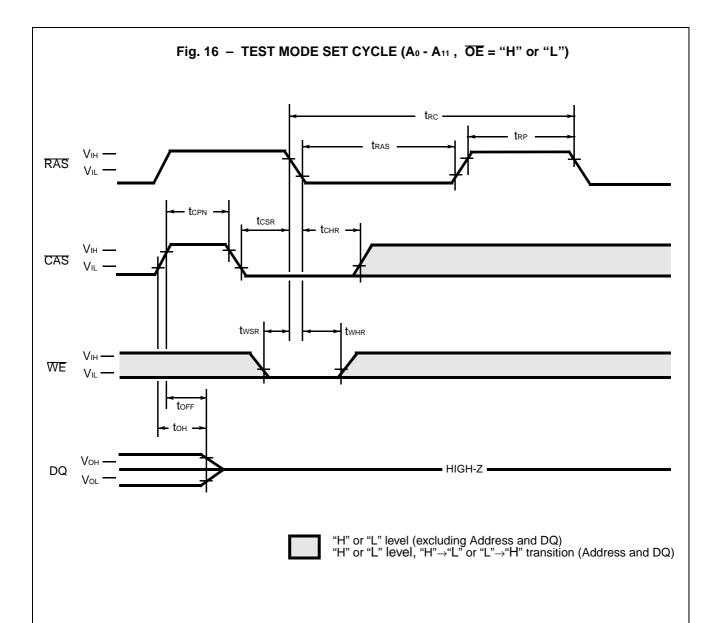

13





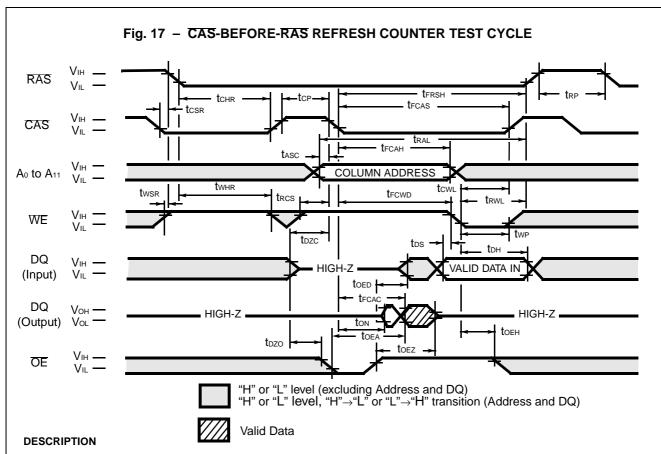






Refresh of RAM memory cells is accomplished by performing a read, a write, or a read-modify-write cycle at each of 4096 row addresses every 65.6-milliseconds. Three refresh modes are available: RAS-only refresh, CAS-before-RAS refresh, and hidden refresh.

RAS-only refresh is performed by keeping RAS Low and CAS High throughout the cycle; the row address to be refreshed is latched on the falling edge of RAS. During RAS-only refresh, DQ pin is kept in a high-impedance state.


DESCRIPTION

Test Mode;

The purpose of this test mode is to reduce device test time to one sixteenth of that required to test the device conventionally. The test mode function is entered by performing a WE and CAS-before-RAS (WCBR) refresh for the entry cycle. In the test mode, read and write operations are executed in units of sixteenth bits which are selected by the address combination of CAO and CA1. In the write mode, data is written into sixteenth cells simultaneously. But the data must be input from DQ₁ only. In the read mode, the data of sixteenth cells at the selected addresses are read out from DQ and checked in the following manner.

When the sixteenth bits are all "L" or all "H", a "H" level is output. When the sixteenth bits show a combination of "L" and "H", a "L" level is output.

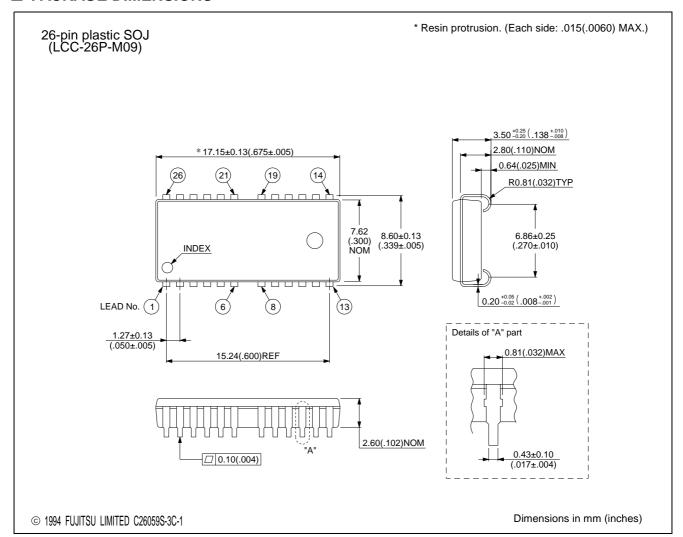
The test mode function is exited by performing a RAS-only refresh or a CAS-before-RAS refresh for the exit cycle. In test mode operation, the following parameters are delayed approximately 10 ns from the specified value in the data sheet trc, trwc, trac, tcac, taa, tras, trsh, tcas, tcsh, tral, tcal, trwb, tcwb, tawb, tcpwb, trhcp

A special timing sequence using the $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh counter test cycle provides a convenient method to verify the functionality of $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh circuitry. If, after a $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh cycle $\overline{\text{CAS}}$ makes a transition from High to Low while $\overline{\text{RAS}}$ is held Low, read and write operations are enabled as shown above. Row and column addresses are defined as follows:

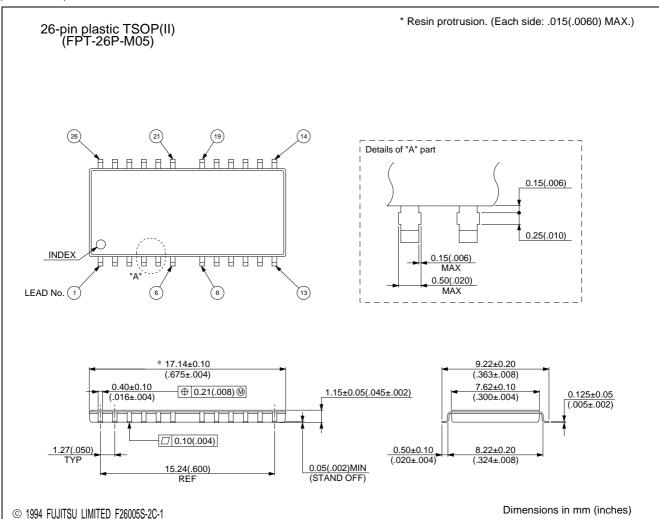
Row Address: Bits A₀ through A₁₁ are defined by the on-chip refresh counter.

Column Address: Bits A₀ through A₉ are defined by latching levels on A₀ to A₉ at the second falling edge of CAS.

The CAS-before-RAS Counter Test procedure is as follows:


- 1) Initialize the internal refresh address counter by using 8 CAS-before-RAS refresh cycles.
- 2) Use the same column address throughout the test.
- 3) Write "0" to all 4096 row addresses at the same column address by using normal write cycles.
- 4) Read "0" written in procedure 3) and check; simultaneously write "1" to the same addresses by using CAS-before-RAS refresh counter test (read-modify-write cycles). Repeat this procedure 4096 times with addresses generated by the internal refresh address counter.
- 5) Read and check data written in procedure 4) by using normal read cycle for all 4096 memory locations.
- 6) Reverse test data and repeat procedures 3), 4), and 5).

(At recommended operating conditions unless otherwise noted.)


		, i i					
NI-	_	Symbol	MB8116400B-50		MB8116	Unit	
No.	Parameter	Symbol	Min.	Max.	Min.	Max.	Unit
90	Access Time from CAS	t FCAC	_	45		50	ns
91	Column Address Hold Time	t FCAH	35	_	35	_	ns
92	CAS to WE Delay Time	t FCWD	63	_	70	_	ns
93	CAS Pulse width	trcas	45	_	50	_	ns
94	RAS Hold Time	t FRSH	45	_	50	_	ns

Note. Assumes that CAS-before-RAS refresh counter test cycle only.

■ PACKAGE DIMENSIONS

(Continued)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED

Corporate Global Business Support Division

Electronic Devices

KAWASAKI PLANT, 4-1-1, Kamikodanaka

Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC.

Semiconductor Division 3545 North First Street

San Jose, CA 95134-1804, U.S.A.

Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center

Mon. - Fri.: 7 am - 5 pm (PST)

Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH

Am Siebenstein 6-10

D-63303 Dreieich-Buchschlag

Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD

#05-08, 151 Lorong Chuan

New Tech Park

Singapore 556741 Tel: (65) 281-0770

Fax: (65) 281-0220

http://www.fmap.com.sg/

F9712

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.